P1 Self-resistance mechanisms of actinomycetes producing lipid II-targeting antibiotics
Sunday, January 11, 2015
California Ballroom C and Santa Fe Room
Evi Stegmann1, Regina Kiliian2, Hans-Joerg Frasch3, Roberta Pozzi4 and Wolfgang Wohlleben1, (1)Microbiology/Biotechnology, University Tuebingen, Tuebingen, (2)Microbiology/biotechnology, University of Tuebingen, (3)University of Tuebingen, (4)Microbiology/Biotechnology, University of Tuebingen
Glycopeptides and several lantibiotics are lipid II targeting antibiotics produced by actinomycetes. To protect themselves from their own product, antibiotic producers developed self-resistance mechanisms. Inspection of different producer strains revealed that their resistance is not only based on a single determinant but on the synergistic action of different factors.

Glycopeptide producers possess different ways to synthesize a modified peptidoglycan to prevent the binding of the glycopeptide antibiotic. One possible modification is the synthesis of peptidoglycan precursors terminating with a D-alanyl-D-lactate (D-Ala-D-Lac) rather than with a D-alanyl-D-alanine (D-Ala-D-Ala) resulting in a 1000-fold decreased binding affinity of the glycopeptide to its target. The reprogramming of the peptidoglycan precursor biosynthesis is based on the action of VanHAX or paralogous enzymes as it was shown for Amycolatopsis balhimycina. A second peptidoglycan modification resulting in glycopeptide resistance was investigated in the glycopeptide A40926 producer Nonomuraea ATCC 39727. Nonomuraea eliminates the glycopeptide target by synthesizing a peptidoglycan with 3-3 cross-linked peptide stems. The carboxypeptidase VanYn provides tetrapeptides which serve as substrates for the L,D-transpeptidase catalysing the formation of 3-3 cross-links. The occurrence of 3-3 cross-linked dimers is also an important feature of the lantibiotic NAI-107 producer Microbispora ATCC PTA-5024. Moreover, the D-Ala in the fourth position in the acceptor peptide of muropeptides is exchanged to glycine or serine in Microbispora, a side reaction of the L,D-transpeptidase. Together with the lipoprotein MlbQ, the ABC transporter MlbYZ and the transmembrane protein MlbJ it might contribute to the self-resistance in Microbispora ATCC PTA-5024.