18-16: A novel process configuration of simultaneous saccharification and fermentation for bioethanol production at high solid loadings

Tuesday, May 1, 2012
Napoleon Ballroom C-D, 3rd fl (Sheraton New Orleans)
Rakesh Koppram, Ruifei Wang, Carl Johan Franzen, Eva Albers and Lisbeth Olsson, Industrial Biotechnology, Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
The economical viability and commercialization of lignocellulose-to-ethanol demands the process to work under high-solid loadings to result in high sugar yield and final ethanol titer in S. cerevisiae based simultaneous saccharification and fermentation (SSF) process. The practical limitations in a conventional batch SSF process at high-solid loadings include, poor mixing and accessibility of enzymes to substrates and high inhibitors concentration that reduces the yeast viability and metabolism. To overcome these limitations, we propose a novel SSF process configuration involving feeding of substrate, enzyme and yeast, concomitantly. It is possible to overcome mixing issues associated with a batch SSF at high-solid loadings by a feed of substrate, enzyme and yeast. The feed of freshly cultivated yeast throughout the fermentation process ensures active metabolic state of yeast. In addition, the substrate feed ensures low inhibitors concentration at any given time point increasing the survival ability of yeast compared to a batch SSF. The enzyme feed ensures slow release of glucose providing an opportunity for xylose consuming yeast strain to co-consume xylose together with glucose. The aim of the current work is to understand how different combinations of feeding strategies influence the outcome of the SSF process. In the longer perspective, we aim at deducing an optimized SSF process that can handle very high-solid loadings with efficient hydrolysis and fermentation process at low enzyme and yeast loadings, respectively.
See more of: Poster Session 2
See more of: General Submissions